امروزه در اكثر سازمان ها، داده ها به سرعت در حال جمع آوری و ذخيره شدن می باشند. اما می توان ادعا کرد كه علیرغم اين حجم انبوه داده ها، امروزه سازمان ها با فقر دانش در تصمیم گیری روبرو هستند. بنابراین علم داده کاوی مطرح می شود تا پاسخگوی این نیاز های مدیران شود.
داده کاوی یعنی استخراج اطلاعات گرانبها از حجم عظیم معادن داده ها. فلسفه ی داده کاوی این است که با شناخت درست از گذشته، آینده را می توان پیش بینی کرد.
وظیفه ی داده کاوی، کاویدن و استخراج از منابع عظیم داده و بانک های اطلاعاتی است تا اطلاعات گران بهایی که در حجم انبوهی از اطلاعات سطحی پنهان شده است را استخراج کند. «داده کاوی» ترجمه ی عبارت «Data Mining» و به معنای «کاویدن معادن داده» است.
تفاوت اصلی داده کاوی و علم آمار، در حجم داده های مورد تحلیل، روش مدلسازی داده ها و استفاده از هوش مصنوعی است. فرآیند داده کاوی در استاندارد «کریسپ دی ام» در طول شش مرحله اجرا می شود.
در ابتدای فرایند داده کاوی، مشکلات شرکت یا سازمان شما پیدا خواهد شد و در پایان با کمک هوش مصنوعی، راهکارهایی برای حل آن مشکلات در اختیار شما قرار خواهد گرفت.
پس از یافتن مشکلات در ابتدای فرآیند داده کاوی، اطلاعات ریز ثبت شده در شرکت یا خط تولید شما دریافت می شود.
بر اساس این اطلاعات، مکانیزم های مرتبط در کسب و کار شما مدلسازی کامپیوتری می شود و سپس با کمک متدهای «یادگیری ماشین» راه حل هایی برای از بین بردن مشکلات شرکت شما در چارچوب گزارشات مستند و نرم افزار رایانه ای در اختیار شما قرار می گیرد.
فلسفه ی داده کاوی این است که آینده، بسیار به گذشته شبیه است. اگر گذشته را خوب بشناسید می توانید آینده را پیش بینی کنید. داده کاوی به شما کمک می کند تا رفتار کسب و کار خود را در گذشته دقیقاً بشناسید و بر اساس آن آینده را با تقریب بالا پیش بینی کنید. به عنوان مثال داده کاوی به شما کمک می کند تا حداقل دو مورد اساسی را در بخش فروش کسب و کار خود پیش بینی کنید:
- پیش بینی نیاز های یک مشتری خاص در آینده و در نتیجه حفظ آن مشتری
- پیش بینی نیاز بازار در زمان ها و مناطق مختلف و در نتیجه ساماندهی نظام توزیع برای آنها
در نهایت با داده کاوی شما مجبور می شوید تصمیمات احساسی را فراموش کنید و بر اساس واقعیت ها تصمیم بگیرید. بنابراین ضرر های ناشی از نا آگاهی مدیران حذف می شود.
با مقالات بعدی Server.ir همراه باشید…